
Lecture 14

Reflection, Transmission, and
Interesting Physical Phenomena

We have seen the derivation of a reflection coefficient in a transmission line that relates the
amplitude of the reflected wave to that of the incident wave. By doing so, we have used a
simplified form of Maxwell’s equations, the telegrapher’s equations which are equations in
one dimension. Here, we will solve Maxwell’s equations in its full glory, but in order to do so,
we will look at a very simple problem of plane wave reflection and transmission at a single
plane interface.

This will give rise to the Fresnel reflection and transmission coefficients, and embedded
in them are interesting physical phenomena. We will study these interesting phenomena as
well. This is a rare example of a simple closed-form solution to Maxwell’s equations. It offers
us physical insight to the hyperspace of electromagnetic solutions. Even though it is only the
tip of the iceberg, but it offers physical insight into the interaction of wave field with a simple
medium or geometry.

(Much of the contents of this lecture can be found in Kong, and also the ECE 350X
lecture notes. They can be found in many textbooks, even though the notations can be
slightly different [32,33,45,51,55,66,81,85,88,89].)

14.1 Reflection and Transmission—Single Interface Case

We will derive the plane-wave reflection and transmission coefficients in closed-form for the
single interface case between two dielectric media. These reflection and transmission coeffi-
cients are also called the Fresnel reflection and transmission coefficients because they were
first derived by Austin-Jean Fresnel (1788-1827).1

The single plane interface, plane wave reflection and transmission problem, with compli-
cated mathematics, is homomorphic to the transmission line problem. The complexity comes

1Note that he lived before the completion of Maxwell’s equations in 1865. But when Fresnel derived the
these coefficients in 1823, they were based on the elastic theory of light; and hence, the formulas are not
exactly the same as what we are going to derive (see Born and Wolf, Principles of Optics, p. 40 [59]).
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because we have to keep track of the 3D polarizations of the electromagnetic fields in this
case as well as finding a solution in 3D space. We shall learn later that the mathematical
homomorphism can be used to exploit the simplicity of transmission line theory in seeking
the solutions to the multiple dielectric interface problems.

14.1.1 TE Polarization (Perpendicular or E Polarization)2

Figure 14.1: A schematic showing the reflection of the TE polarization wave impinging
on a dielectric interface.

To set up the above problem, motivated by physical insight, the wave in Region 1 can be
written as the superposition or sum of the incident plane wave and reflected plane wave.
Here, Ei(r) and Er(r) are the incident and reflected plane waves, respectively. The total field
is Ei(r) + Er(r) which are the phasor representations of the fields. We assume plane wave
polarized in the y direction where the wave vectors are βi = x̂βix + ẑβiz, βr = x̂βrx − ẑβrz,
βt = x̂βtx + ẑβtz, respectively for the incident, reflected, and transmitted waves. Then, from
Section 7.3, we have

Ei = ŷE0e
−jβi·r = ŷE0e

−jβixx−jβizz (14.1.1)

which represents a uniform incident plane wave, and

Er = ŷRTEE0e
−jβr·r = ŷRTEE0e

−jβrxx+jβrzz (14.1.2)

2These polarizations are also variously know as TEz , or the s and p polarizations, a descendent from the
notations for acoustic waves where s and p stand for shear and pressure waves, respectively.
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which is a uniform reflected wave with RTE being the Fresnel reflection coefficient. In Region
2, we only have transmitted plane wave; hence

Et = ŷTTEE0e
−jβt·r = ŷTTEE0e

−jβtxx−jβtzz (14.1.3)

with TTE being the Fresnel transmission coefficient. In the above, we assume that the incident
wave is known and hence, E0 is known. From (14.1.2) and (14.1.3), RTE and TTE are
unknowns yet to be sought. To find them, we need two boundary conditions at the interface
to yield two equations.3 These boundary conditions are tangential E field continuous and
tangential H field continuous, which are n̂×E continuous and n̂×H continuous conditions.

Imposing n̂×E continuous at z = 0, we get

E0e
−jβixx +RTEE0e

−jβrxx = TTEE0e
−jβtxx, ∀x (14.1.4)

where ∀ implies “for all”. In order for the above to be valid for all x, it is necessary that
βix = βrx = βtx, which is also known as the phase matching condition.4 From the above, by
letting βix = βrx = β1 sin θi = β1 sin θr, we obtain that θr = θi or that the law of reflection
that the angle of reflection is equal to the angle of incidence.

By letting βix = β1 sin θi = βtx = β2 sin θt, we obtain Snell’s law of refraction that
β1 sin θi = β2 sin θt. (This law of refraction was also known in the Islamic world in the 900
AD to Ibn Sahl [105]).

The exponential terms or the phase terms on both sides of (14.1.4) are the same. Now,
canceling common terms on both sides of the equation (14.1.4), the above simplifies to

1 +RTE = TTE (14.1.5)

To impose n̂×H continuous at the interface, one needs to find the H field using ∇×E =
−jωµH. By letting ∇ with −jβ, then we have H = −jβ ×E/(−jωµ) = β ×E/(ωµ). By so
doing5

Hi =
βi ×Ei

ωµ1
=
βi × ŷ
ωµ1

E0e
−jβi·r =

ẑβix − x̂βiz
ωµ1

E0e
−jβi·r (14.1.6)

Hr =
βr ×Er

ωµ1
=
βr × ŷ
ωµ1

RTEE0e
−jβr·r =

ẑβrx + x̂βrz
ωµ1

RTEE0e
−jβr·r (14.1.7)

Ht =
βt ×Et

ωµ2
=
βt × ŷ
ωµ2

TTEE0e
−jβt·r =

ẑβtx − x̂βtz
ωµ2

TTEE0e
−jβt·r (14.1.8)

Imposing n̂×H continuous or Hx continuous at z = 0, we have

− βiz
ωµ1

E0e
−jβixx +

βrz
ωµ1

RTEE0e
−jβrxx = − βtz

ωµ2
TTEE0e

−jβtxx (14.1.9)

3Here, we will treat this problem as a boundary value problem where the unknowns are sought from
equations obtained from boundary conditions.

4The phase-matching condition can also be proved by taking the Fourier transform of the equation with
respect to x. Among the physics community, this is also known as momentum matching, as the wavenumber
of a wave is related to the momentum of the particle.

5Compared to transmission line theory, we note here that field theory is a lot more complicated to drive
you daffy. That is the triumph of transmission line theory as well.
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As mentioned before, the phase-matching condition requires that βix = βrx = βtx. The
dispersion relation for plane waves requires that in their respective media,

β2
ix + β2

iz = β2
rx + β2

rz = ω2µ1ε1 = β2
1 , Region 1 (14.1.10)

β2
tx + β2

tz = ω2µ2ε2 = β2
2 , Region 2 (14.1.11)

Since

βix = βrx = βtx = βx (14.1.12)

the above implies that

βiz = βrz = β1z (14.1.13)

Moreover, βtz = β2z 6= β1z usually since β1 6= β2. Then (14.1.9) simplifies to

β1z

µ1

(
1−RTE

)
=
β2z

µ2
TTE (14.1.14)

where β1z =
√
β2

1 − β2
x, and β2z =

√
β2

2 − β2
x.

Solving (14.1.5) and (14.1.14) for RTE and TTE yields the Fresnel coefficients to be6

RTE =

(
β1z

µ1
− β2z

µ2

)/(
β1z

µ1
+
β2z

µ2

)
(14.1.15)

TTE = 2

(
β1z

µ1

)/(
β1z

µ1
+
β2z

µ2

)
(14.1.16)

6For mnemonic, we can also call these coefficients RTE12 and TTE12 with the understanding that terms with
subscripts of 1 comes before terms with subscripts of 2.
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14.1.2 TM Polarization (Parallel or H Polarization)7

Figure 14.2: A similar schematic showing the reflection of the TM polarization wave
impinging on a dielectric interface. The solution to this problem can be easily obtained
by invoking duality principle.

The solution to the TM polarization case can be obtained by invoking the duality principle
where we do the substitution E → H, H → −E, and µ 
 ε as shown in Figure 14.2. The
reflection coefficient for the TM magnetic field is then

RTM =

(
β1z

ε1
− β2z

ε2

)/(
β1z

ε1
+
β2z

ε2

)
(14.1.17)

TTM = 2

(
β1z

ε1

)/(
β1z

ε1
+
β2z

ε2

)
(14.1.18)

Please remember that RTM and TTM are reflection and transmission coefficients for the
magnetic fields, whereas RTE and TTE are those for the electric fields. Some textbooks may
define these reflection coefficients based on electric field only, and they will look different, and
duality principle cannot be applied.

14.1.3 Lens Optics and Ray Tracing

The Fresnel coefficients are derived for infinitely flat surface. But when the wavelength is very
short, a curved surface resembles a flat surface to the plane wave,8 and the Fresnel coefficients

7Also known as TMz polarization.
8This is very much akin to the notion that the Earth is flat to people who do not venture outside the

vicinity of their neighborhood.
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can be used to estimate the reflected and transmitted waves. This is the fundamental principle
behind lens optics.9

The field where electromagnetic wave is replaced by ray is known also as ray optics. In
this case, Maxwell’s equations are not solved in their full glory, but approximately. The
approximation is a very good one when the frequency is high and the wavelength short.
We will learn more in high-frequency methods later in the course. When the geometry is
simple, solving the ray optics problem is similar to solving a geometry problem. But when
the geometry is highly complex, ray-tracing methods are used for tracking the light rays as
they propagates through a complex environment. Computer codes can be written to do ray
tracing. Ray tracing has been used to enhance the fidelity of a picture in the movie industry.

Figure 14.3: Ray tracing based on Snell’s law of refraction, can be used to solve many
optics problems when the wavelength is small compared the to the size of the geometry
(courtesy of Steven Mellema, The Cosmic Universe).

14.2 Interesting Physical Phenomena

Three interesting physical phenomena emerge from the solutions of the single-interface prob-
lem. They are total internal reflection, Brewster angle effect, and surface plasmonic resonance.
We will look at them next.

9Lens were made in China since the Han dynasty in ancient times [106].
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14.2.1 Total Internal Reflection

Figure 14.4: Wave-number surfaces in two regions showing the phase matching condition.
In this case, the wave number in medium t is larger than the wave number in medium
1. In this case, the wave vectors for the incident wave, reflected wave, and transmitted
wave have to be aligned in such a way that their components parallel to the interface are
equal in order to satisfy the phase-matching condition. One can see that Snell’s law is
satisfied when the phase-matching condition is satisfied.

Total internal reflection comes about because of phase matching (also called momentum
matching). This phase-matching condition can be illustrated using β-surfaces (same as k-
surfaces in some literature), as shown in Figure 14.4. It turns out that because of phase
matching, for certain interfaces, β2z becomes pure imaginary.
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Figure 14.5: Wave-number surfaces in two regions showing the phase matching condition.
In this case, the wave number in medium t is smaller than the wave number in medium
1 when total internal reflection can occur. The figure shows in incident wave vector
coming in at the critical angle. Then the transmitted wave vector is parallel to the
interface as shown. When the incident angle is larger than the critical angle, βz becomes
an imaginary number the wave vector in Region t is complex and cannot be drawn.

As shown in Figures 14.4 and 14.5, because of the dispersion relation that β2
rx + β2

rz =
β2
ix + β2

iz = β2
1 , β2

tx + β2
tz = β2

2 , they are equations of two circles in 2D whose radii are β1

and β2, respectively. (The tips of the β vectors for Regions 1 and 2 have to be on a spherical
surface in the βx, βy, and βz space in the general 3D case, but in this figure, we only show a
cross section of the sphere assuming that βy = 0.)

Phase matching implies that the x-component of the β vectors are equal to each other
as shown. One sees that θi = θr in Figure 14.5, and also as θi increases, θt increases. For
an optically less dense medium where β2 < β1, according to the Snell’s law of refraction, the
transmitted β will refract away from the normal, as seen in the figure. Therefore, eventually
the vector βt becomes parallel to the x axis when βix = βrx = β2 = ω

√
µ2ε2 and θt = π/2.

The incident angle at which this happens is termed the critical angle θc (see Figure 14.5).

At the critical angle, since βix = β1 sin θi = βrx = β1 sin θr = β2, or

sin θr = sin θi = sin θc =
β2

β1
=

√
µ2ε2√
µ1ε1

=
n2

n1
(14.2.1)

where n1 is the reflective index defined as c0/vi =
√
µiεi/

√
µ0ε0 where vi is the phase velocity
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of the wave in Region i. Hence,

θc = sin−1(n2/n1) (14.2.2)

When θi > θc. βx > β2 and β2z =
√
β2

2 − βx2 becomes pure imaginary. When β2z

becomes pure imaginary, the wave cannot propagate in Region 2, or β2z = −jα2z, and the
wave becomes evanescent. The physical reason for the decaying nature of the evanescent wave
is quite different from that of a decaying wave in a lossy medium. The former is due to phase
matching, and the need for the field to satisfy the boundary condition, while the latter is due
to the loss of energy to the lossy medium. One can also show that the evanescent wave does
not carry real power, but only reactive power.

The reflection coefficient (14.1.15) becomes of the form

RTE = (A− jB)/(A+ jB) (14.2.3)

Since the numerator is the complex conjugate of the denominator. It is clear that |RTE | = 1
always, and that RTE = ejθTE . Therefore, a total internally reflected wave suffers a phase
shift. A phase shift in the frequency domain corresponds to a time delay in the time domain.
Such a time delay is achieved by the wave traveling laterally in Region 2 before being refracted
back to Region 1. Such a lateral shift is called the Goos-Hanschen shift as shown in Figure
14.6 [59].10 A wave that travels laterally along the surface of two media is also known as
lateral waves [107,108].

(Please be reminded that total internal reflection comes about entirely due to the phase-
matching condition when Region 2 is a faster medium than Region 1. Hence, it will occur
with all manner of waves, such as elastic waves, sound waves, seismic waves, quantum waves
etc., and even waves in a cylindrical fiber.)

Figure 14.6: Goos-Hanschen Shift. A phase delay is equivalent to a time delay (courtesy
of Paul R. Berman (2012), Scholarpedia, 7(3):11584 [109]).

10You may be perplexed by our use of finite beam width of the plane wave for our physical argument. But
you will learn later that a finite beam width can be approximated by a bundle of plane waves with similar
wave numbers.
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The guidance of a wave in a dielectric slab is due to total internal reflection at the dielectric-
to-air interface. The wave bounces between the two interfaces of the slab, and creates evanes-
cent waves outside, as shown in Figure 14.7. The guidance of waves in an optical fiber works
by similar mechanism of total internal reflection, as shown in Figure 14.8. Due to the tremen-
dous impact the optical fiber has on modern-day communications, Charles Kao, the father of
the optical fiber, was awarded the Nobel Prize in 2009. His work was first published in [110].

Figure 14.7: The total internal reflections at the two interfaces of a thin-film waveguide
can be used to guide an optical wave (courtesy of E.N. Glytsis, NTUA, Greece [111]).

Figure 14.8: An optical fiber consists of a core and a cladding region. Total internal
reflections, due to phase matching condition, can occur at the core-cladding interface.
They can guide an optical wave in the fiber (courtesy of Wikepedia [112]).

Waveguides have affected international communications for over a hundred year now.
Since telegraphy was in place before the full advent of Maxwell’s equations, submarine cables
for global communications were laid as early as 1850’s. Figure 14.9 shows a submarine cable
from 1869 using coaxial cable, and one used in the modern world using optical fiber.
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Figure 14.9: The picture of an old 1869 submarine cable made of coaxial cables (left), and
modern submarine cable made of optical fibers (right) (courtesy of Atlantic-Cable [113],
and Wikipedia [114]).
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